Brookhaven Forum: Great Expectations, a New Chapter Brookhaven – October 7, 2015

CMS top quark results at 13 TeV

- ► Introduction and dataset (42 pb⁻¹ at 13 TeV)
- Dilepton channel
 - eµ inclusive cross section
 - Differential cross section (ee, eμ, μμ)
- Lepton plus jets channel
 - Differential and inclusive cross section
 - Comparison with ATLAS and theory
- Single top t-channel cross section
- Conclusions

Introduction to top quarks at CMS

- Measuring top quark cross sections is important at 13 TeV:
 - Precision tests of QCD calculations
 - tt̄ is a background in almost all other analyses (SUSY, ttH, etc...)
 - Can use to measure m_{+} , α_{c} , calibrate b-tagging
 - Sensitive to BSM physics
- All analyses shown here use 42 pb⁻¹ good quality data (July 2015)
- tt̄ MC (NLO): Powheg(v2)+Pythia8, NNPDF3.0, m₊=172.5 GeV
 - Alternative with MG5 aMC@NLO, Madgraph5, Powheg+Herwig

$$\sigma_{t\bar{t}} = 832^{+20}_{-29}(\text{scale}) \pm 35(\text{PDF} + \alpha_{s}) \text{ pb}$$
NNLO+NNLL, m,=172.5 GeV, Czakon and Mitov

- Singletop tW (71pb), t-channel (217pb): Powheg, aMC@NLO+Pythia
- Main backgrounds:
 - W+jets, Z+jets: MG5 aMC@NLO + Pythia
 - QCD multijet, Diboson: Pythia8 (and from data)

Inclusive eµ cross section

- Trigger: dilepton (eμ) trigger
- Event selection:
 - Isolated OS eµ pair, p_{τ} >20 GeV, $|\eta|$ <2.4
 - ≥2 jets, p_T>30 GeV, |η|<2.4
 - No b-tagging
 - $\mathbf{m}_{\ell\ell} > 20 \text{ GeV}$
- Background estimation:
 - DY normalized to MC prediction by a data/MC SF from Z peak in data
 - Non-W/Z from SS control region
 - Single top, diboson from MC
- Cut and Count

$$\sigma_{t\bar{t}} = rac{N_{
m data} - N_{
m bkg}}{arepsilon A \mathcal{L}}$$

	Number of events
Source	$\mathrm{e}^{\pm}\mu^{\mp}$
Drell–Yan	6.4 ± 1.2
Non-W/Z leptons	8.5 ± 4.3
Single top quark	10.6 ± 3.4
VV (V = W or Z)	2.6 ± 0.9
Total background	28.1 ± 5.7
$t\bar{t}$ dilepton signal	207 ± 16
Data	220

Kinematic distributions

▶ tt normalized to NNLO+NNLL

eµ inclusive cross section results

- Luminosity uncertainty dominates
- Main effects will be reduced with more data and further studies

Source	$\Delta \sigma_{t\bar{t}} \; (\mathrm{pb})$	$\Delta \sigma_{t\bar{t}}/\sigma_{t\bar{t}}$ (%)
Data statistics	60	7.7
Trigger efficiencies	39	5.0
Lepton efficiencies	33	4.3
Lepton energy scale	< 1	≤ 0.1
Jet energy scale	20	2.6
Jet energy resolution	< 1	≤ 0.1
Pileup	2.8	0.4
Scale $(\mu_F \text{ and } \mu_R)$	1.5	0.2
$t \bar{t}$ NLO generator	15	1.9
$t\bar{t}$ hadronization	14	1.8
PDF	12	1.5
Single top quark	14	1.8
VV (V = W or Z)	3.5	0.5
Drell–Yan	3.9	0.5
Non-W/Z leptons	8	1.0
Total systematic (no integrated luminosity)	62	8.0
Integrated luminosity	93	12
Total	126	16.4

$$\sigma_{t\bar{t}} = 12.9 \pm 1.0(stat) \pm 1.1(syst) \pm 1.5(lumi)$$
 pb [fiducial eµ] $\sigma_{t\bar{t}} = 772 \pm 60$ (stat) ± 62 (syst) ± 93 (lumi) pb [total]

Values for m_,=172.5 GeV. For m_,=173.34 GeV $\sigma_{t\bar{t}}$ decreases by ~0.7%.

$t\bar{t} \rightarrow ev_e b\mu v_\mu b$ candidate event

Dilepton differential cross section

- ▶ Trigger on isolated dileptons and $\ell\ell$ +jets topologies
- Event selection (ee, eμ, μμ)
 - Isolated OS leptons: $p_T>20$ GeV, $|\eta|<2.4$
 - ≥2 jets: p_T>30 GeV, |η|<2.4
 - ≥ 1 b-tag jet (CSV): $\epsilon_b \approx 80\%$; $\epsilon_{ag} \approx 10\%$
 - m₁₁>20 GeV
 - ee, $\mu\mu$: MET>40GeV and $|91-m_{ij}|>15GeV$
- Same background estimations as inclusive σ
- Kinematic reconstruction (94% efficient)
 - Constraints: $m_t = 172.5 \text{ GeV } (x2),$ $m_w = 80.4 \text{ GeV } (x2), (p_v + p_{\overline{v}})_T = \text{MET}$
 - Reconstruct each event 100 times, smearing inputs by their resolution
 - Consider weighted average
 - Derive scale factor ε_{DATA}/ε_{MC}

Dilepton differential results

- Calculate normalized differential cross sections to reduce systematics
- Perform regularized unfolding to parton level
- Good agreement overall: still dominated by statistical uncertainty

Differential ℓ +jets cross section

- Triggers based on single isolated lepton
- Event selection:
 - 1 isolated lepton with $p_{\tau}>30$ GeV, $|\eta|<2.1$
 - \geq 4 jets with p_T>25 GeV, $|\eta|$ <2.4
 - ≥ 1 b-tagged ($\epsilon_b \approx 65\%$; $\epsilon_{qq} \approx 3\%$)
 - b-tag jet and leading non-b jet: p_→>35 GeV
- Kinematic reconstruction
 - Use mass constraints of m_t, m_w on leptonic side to obtain neutrino momentum (NIM 736, 169 [2014]) and correct b-jet on leptonic side
 - Calculate probability λ_m according to 2D mass distributions of m_t , m_w on hadronic side to obtain best permutation of jets
 - Correct jets to top match combination: 85% for 4jet, ~40% for 7jet events
 - Cut $-\log(\lambda_m) < 10$
- 1100 events, with 83% signal

 $-\log(\lambda_m)$

Kinematic distributions

- ▶ tt normalized to NNLO+NNLL cross section
- Backgrounds from MC simulations (50% syst. on their normalization)

Parton level distributions ℓ +jets

- Unfolded and extrapolated to full phase space
- Binning optimized to have similar number of events per bin
- ▶ Good description of $p_{\tau}(t)$: Powheg+Pythia6 was harder in previous 8 TeV results
- ▶ $p_{T}(t\bar{t})$ better described by Powheg than MG5_aMC@NLO or Madgraph (+≤3 jets)

A. Garcia-Bellido (Rochester)

CMS top results

Inclusive ℓ+jets cross section

- Use differential analysis in 1 bin to obtain inclusive cross section
- Unfolding is just ε·A correction of 9.9%
- Uncertainty dominated by luminosity, b-tagging and PS/hadronization unc.

source	inclusive cross section [%]
statistical uncertainty	3.2
b tagging	5.1
jet energy scale	3.5
jet energy resolution	3.4
lepton selection	3.0
$E_{ m T}^{ m miss}($ non jet $)$	< 0.1
pileup	1.2
background	1.6
PDF	4.7
factorization scale	< 0.1
renormalization scale	< 0.1
NLO generator	2.0
POWHEG+ PYTHIA8vs. HERWIG++	3.4
total systematic uncertainty (no luminosity)	10.0
luminosity	12
total uncertainty	15.6

 $\sigma_{t\bar{t}} = 244 \pm 8 \text{ (stat)} \pm 24 \text{ (sys)} \pm 29 \text{ (lumi)} \text{ pb } [\ell+\text{jets}]$

 $\sigma_{\text{ff}} = 836 \pm 27 \text{ (stat)} \pm 84 \text{ (sys)} \pm 100 \text{ (lumi)} \text{ pb [total]}$

Values for m₊=172.5 GeV. Slope: -6.3 pb/GeV

σ_t comparison with ATLAS and theory

- New measurements at 13 TeV are in agreement between each other and the NNLO+NLL prediction
- Now working on reducing systematic uncertainties
 - Better luminosity scans, understanding of JES, trigger, b-tagging

Channel	Theory [pb]	Experiment	Meas. σ [pb]	Stat. (%)	Sys. (%)	Lumi. (%)
eµ 832	022	CMS PAS 15-005, 42 pb ⁻¹	772	7.7	8.0	12
	032	ATLAS CONF 15-033, 78 pb ⁻¹	825	5.9	7.3	10
ℓ+jets	832	CMS PAS 15-003, 42 pb ⁻¹	836	3.3	10.3	12
		ATLAS CONF 15-049, 85 pb ⁻¹	817	1.6	12.6	11

A. Garcia-Bellido (Rochester)

CMS top results

Single top t-channel cross section

- Event selection
 - 1 isolated μ, pT>22 GeV, |η|<2.1
 - 2 jets, pT>40 GeV, |η|<4.7
 - 1 b-tag (MVA)
- W+jets from simulation, validated outside top mass window: 130<m_{ρνb}<225 GeV</p>
- ▶ QCD shape from data, normalization from fit of $m_T(W)$ in SB and cut: $m_T(W) > 50$ GeV

Process	SR	SB
tŧ & tW	157 ± 1	71.7 ± 0.4
W/Z+jets	40 ± 4	47 ± 4
QCD	10 ± 5	2 ± 1
<i>t-</i> channel	33 ± 1	7.2 ± 0.3
Total expected	240 ± 6	128 ± 4
Data	252	127

PAS TOP 15-004

A. Garcia-Bellido (Rochester)

CMS top results

t-channel results

- ▶ Binned likelihood fit to $|\eta_{ij}|$ in 2 jets (1 b-tag) and 3 jets (2 b-tags)
 - 3j2t dominated by tt̄
 - Bkg norm. constrained
 - Sig norm. unconstrained^a
- Statistics dominated
- 42% overall unc.
- Significance:
 - Observed=3.5σ
 - Expected=2.7σ

$$\sigma_{t} = 274 \pm 98 \text{ (stat)} \pm 52 \text{ (sys)} \pm 33 \text{ (lumi) pb}$$

 $\sigma_{t} = 217.0 \pm 6.6 \text{(scale)} \pm 6.2 \text{(PDF)} \text{ pb [NLO]}$

NNLO available: 214.5 ± 0.6 [PLB 736, 58 (2014)]

Conclusions

- New tt and t-channel production cross section measurements
- Robust measurements with early Run II data
- Slow start, but plenty more data coming in!
- Will focus now on precision
 - Luminosity uncertainty (12%) will be reduced soon
 - Better understanding of JES, trigger, and b-tagging
- Results in agreement with theory and ATLAS
 - No signature of new physics yet!
- Rich program of properties and searches in top quark sector
- Recently ($\sqrt{s} = 7$, 8 TeV data):
 - Mass combination: 172.44±0.13(stat)±0.47(syst) GeV
 - ullet Observation of ttV, charge asymmetry, all-jets σ , differential σ
 - Cross section ratio $\sigma(ttbb)/\sigma(ttjj)$, W boson helicity
- More papers coming with new tools: boosted top tagging, pile-up cleaning algorithms
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

